The Structure of Twisted Group Algebras of Abelian Groups and Applications

César Polcino Milies

Instituto de Matemática e Estatística Universidade de São Paulo

NCRA, VIII, 28-31 August 2023 Laboratoire de Mathématiques de Lens Université d'Artois

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A linear code $C \subset \mathbb{F}^n$ is called a **cyclic code** if for every vector $(a_0, a_1, \ldots, a_{n-2}, a_{n-1})$ in the code, we have that also the vector $(a_{n-1}, a_0, a_1, \ldots, a_{n-2})$ is in the code.

A linear code $C \subset \mathbb{F}^n$ is called a **cyclic code** if for every vector $(a_0, a_1, \ldots, a_{n-2}, a_{n-1})$ in the code, we have that also the vector $(a_{n-1}, a_0, a_1, \ldots, a_{n-2})$ is in the code.

Notice that the definition implies that if $(a_0, a_1, \ldots, a_{n-2}, a_{n-1})$ is in the code, then all the vectors obtained from this one by a cyclic permutation of its coordinates are also in the code.

Let

$$\mathcal{R}_n = \frac{\mathbb{F}[X]}{\langle X^n - 1 \rangle};$$

We shall denote by [f] the class of the polynomial $f \in \mathbb{F}[X]$ in \mathcal{R}_n .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\mathcal{R}_n = \frac{\mathbb{F}[X]}{\langle X^n - 1 \rangle};$$

We shall denote by [f] the class of the polynomial $f \in \mathbb{F}[X]$ in \mathcal{R}_n . The mapping:

$$\varphi: \mathbb{F}^n \to \frac{\mathbb{F}[X]}{\langle X^n - 1 \rangle}$$

 $(a_0, a_1, \ldots, a_{n-2}, a_{n-1}) \in \mathbb{F}[X] \qquad \mapsto \qquad [a_0 + a_1 X + \ldots + a_{n-2} X^{n-2} + a_{n-1} X^{n-1}].$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

$$\mathcal{R}_n = \frac{\mathbb{F}[X]}{\langle X^n - 1 \rangle};$$

We shall denote by [f] the class of the polynomial $f \in \mathbb{F}[X]$ in \mathcal{R}_n . The mapping:

$$\varphi: \mathbb{F}^n \to rac{\mathbb{F}[X]}{\langle X^n - 1
angle}$$

 $(a_0, a_1, \ldots, a_{n-2}, a_{n-1}) \in \mathbb{F}[X] \qquad \mapsto \qquad [a_0 + a_1 X + \ldots + a_{n-2} X^{n-2} + a_{n-1} X^{n-1}].$

 φ is an isomorphism of \mathbb{F} -vector spaces. Hence $A \text{ code } \mathcal{C} \subset \mathbb{F}^n$ is cyclic if and only if $\varphi(\mathcal{C})$ is an ideal of \mathcal{R}_n .

In the case when $C_n = \langle a \mid a^n = 1 \rangle = \{1, a, a^2, \dots, a^{n-1}\}$ is a cyclic group of order *n*, and \mathbb{F} is a field, the elements of $\mathbb{F}C_n$ are of the form:

$$\alpha = \alpha_0 + \alpha_1 \mathbf{a} + \alpha_2 \mathbf{a}^2 + \dots + \alpha_{n-1} \mathbf{a}^{n-1}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

In the case when $C_n = \langle a \mid a^n = 1 \rangle = \{1, a, a^2, \dots, a^{n-1}\}$ is a cyclic group of order *n*, and \mathbb{F} is a field, the elements of $\mathbb{F}C_n$ are of the form:

$$\alpha = \alpha_0 + \alpha_1 \mathbf{a} + \alpha_2 \mathbf{a}^2 + \dots + \alpha_{n-1} \mathbf{a}^{n-1}.$$

It is easy to show that

$$\mathbb{F}C_n \cong \mathcal{R}_n = \frac{\mathbb{F}[X]}{\langle X^n - 1 \rangle};$$

In the case when $C_n = \langle a \mid a^n = 1 \rangle = \{1, a, a^2, \dots, a^{n-1}\}$ is a cyclic group of order *n*, and \mathbb{F} is a field, the elements of $\mathbb{F}C_n$ are of the form:

$$\alpha = \alpha_0 + \alpha_1 \mathbf{a} + \alpha_2 \mathbf{a}^2 + \dots + \alpha_{n-1} \mathbf{a}^{n-1}$$

It is easy to show that

$$\mathbb{F}C_n \cong \mathcal{R}_n = rac{\mathbb{F}[X]}{\langle X^n - 1 \rangle};$$

Hence, to study cyclic codes is equivalent to study ideals of a group algebra of the form $\mathbb{F}C_n$.

Group Codes

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

It is then natural to extend this definition.

It is then natural to extend this definition.

Definition

A group code is an ideal of a finite group algebra.

It is then natural to extend this definition.

Definition

A group code is an ideal of a finite group algebra.

In what follows, we shall always assume that $char(K) \not\mid |G|$ so all group algebras considered here will be semisimple and thus, all ideals of $\mathbb{F}G$ are of the form $I = \mathbb{F}Ge$, where $e \in \mathbb{F}G$ is an idempotent element.

Let *H* be a subgroup of a finite group *G* and let \mathbb{F} be a field such that $car(\mathbb{F}) \nmid |G|$. The element

$$\widehat{\mathcal{H}} = \frac{1}{|\mathcal{H}|} \sum_{h \in \mathcal{H}} h$$

is an idempotent of the group algebra $\mathbb{F}G$, called the **idempotent** determined by H.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let *H* be a subgroup of a finite group *G* and let \mathbb{F} be a field such that $car(\mathbb{F}) \nmid |G|$. The element

$$\widehat{H} = \frac{1}{|H|} \sum_{h \in H} h$$

is an idempotent of the group algebra $\mathbb{F}G$, called the **idempotent** determined by H.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 \widehat{H} is central if and only if H is normal in G.

Essential idempotents

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let *e* be a primitive central idempotent of $\mathbb{F}G$. Then:

• If e is not a constituent of \widehat{H} we have that $e\widehat{H} = 0$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let e be a primitive central idempotent of $\mathbb{F}G$. Then:

- If e is not a constituent of \widehat{H} we have that $e\widehat{H} = 0$.
- If e is a constituent of \widehat{H} we have that $e\widehat{H} = e$.

Let e be a primitive central idempotent of $\mathbb{F}G$. Then:

- If e is not a constituent of \widehat{H} we have that $e\widehat{H} = 0$.
- If e is a constituent of \widehat{H} we have that $e\widehat{H} = e$.

In this last case, we have that $\mathbb{F}G \cdot e \subset \mathbb{F}G \cdot \widehat{H}$.

Denote by T a transversal of H in G. Then, an element $\alpha \in \mathbb{F}G \cdot e$ can be written in the form

$$\alpha = \sum_{\nu \in T} \alpha_{\nu} \nu \hat{H}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Denote by T a transversal of H in G. Then, an element $\alpha \in \mathbb{F}G \cdot e$ can be written in the form

$$\alpha = \sum_{\nu \in T} \alpha_{\nu} \nu \hat{H}.$$

If we denote $T = \{t_1, t_2, \dots, t_d\}$ and $H = \{h_1, h_2, \dots, h_m\}$, the explicit expression of α is

 $\alpha = \alpha_1 t_1 h_1 + \alpha_2 t_2 h_1 + \dots + \alpha_d t_d h_1 + \dots + \alpha_1 t_1 h_m + \alpha_2 t_2 h_m + \dots + \alpha_d t_d h_m.$

Denote by T a transversal of H in G. Then, an element $\alpha \in \mathbb{F}G \cdot e$ can be written in the form

$$\alpha = \sum_{\nu \in T} \alpha_{\nu} \nu \hat{H}.$$

If we denote $T = \{t_1, t_2, \dots, t_d\}$ and $H = \{h_1, h_2, \dots, h_m\}$, the explicit expression of α is

$$\alpha = \alpha_1 t_1 h_1 + \alpha_2 t_2 h_1 + \dots + \alpha_d t_d h_1 + \dots + \alpha_1 t_1 h_m + \alpha_2 t_2 h_m + \dots + \alpha_d t_d h_m.$$

The sequence of coefficients of α , when written in this order, is formed by *d* repetitions of the subsequence $\alpha_1, \alpha_2, \dots \alpha_d$. In terms of coding theory, this means that the code given by the minimal ideal $\mathbb{F}Ge$ is a **repetition code**. We shall be interested in idempotents that are not of this type.

A primitive idempotent e in the group algebra $\mathbb{F}G$, is an **essential idempotent** if $e \cdot \hat{H} = 0$, for every subgroup $H \neq (1)$ in G.

A minimal ideal of $\mathbb{F}G$ will be called **essential ideal** if it is generated by an essential idempotent.

A primitive idempotent e in the group algebra $\mathbb{F}G$, is an **essential idempotent** if $e \cdot \hat{H} = 0$, for every subgroup $H \neq (1)$ in G.

A minimal ideal of $\mathbb{F}G$ will be called **essential ideal** if it is generated by an essential idempotent.

Lemma

Let $e \in \mathbb{F}G$ be a primitive central idempotent. Then e is essential if and only if the map $\pi : G \to Ge$, is a group isomorphism.

A primitive idempotent e in the group algebra $\mathbb{F}G$, is an **essential idempotent** if $e \cdot \hat{H} = 0$, for every subgroup $H \neq (1)$ in G.

A minimal ideal of $\mathbb{F}G$ will be called **essential ideal** if it is generated by an essential idempotent.

Lemma

Let $e \in \mathbb{F}G$ be a primitive central idempotent. Then e is essential if and only if the map $\pi : G \to Ge$, is a group isomorphism.

Corollary

If G is abelian and $\mathbb{F}G$ contains an essential idempotent, then G is cyclic.

Assume that G is cyclic of order $n = p_1^{n_1} \cdots p_t^{n_t}$. Then, G can be written as a direct product $G = C_1 \times \cdots \times C_t$, where C_i is cyclic, of order $p_i^{n_i}$, $1 \le i \le t$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Assume that G is cyclic of order $n = p_1^{n_1} \cdots p_t^{n_t}$. Then, G can be written as a direct product $G = C_1 \times \cdots \times C_t$, where C_i is cyclic, of order $p_i^{n_i}$, $1 \le i \le t$. Let K_i be the minimal subgroup of C_i ; i.e. the unique subgroup of order p_i in C_i and denote by a_i a generator of this subgroup, $1 \le i \le t$. Set

$$\mathsf{e}_0 = (1 - \widehat{\mathcal{K}_1}) \cdots (1 - \widehat{\mathcal{K}_t})$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then e_0 is a non-zero central idempotent.

Assume that *G* is cyclic of order $n = p_1^{n_1} \cdots p_t^{n_t}$. Then, *G* can be written as a direct product $G = C_1 \times \cdots \times C_t$, where C_i is cyclic, of order $p_i^{n_i}$, $1 \le i \le t$. Let K_i be the minimal subgroup of C_i ; i.e. the unique subgroup of order p_i in C_i and denote by a_i a generator of this subgroup, $1 \le i \le t$. Set

$$\mathsf{e}_0 = (1 - \widehat{\mathcal{K}_1}) \cdots (1 - \widehat{\mathcal{K}_t})$$

Then e_0 is a non-zero central idempotent.

Proposition

Let G be a cyclic group. Then, a primitive idempotent $e \in \mathbb{F}G$ is essential if and only if $e \cdot e_0 = e$. Moreover, e_0 is the sum of all essential idempotents of $\mathbb{F}G$.

Let \mathbb{F}_q denote a finite field with q elements, $C = C_n$ the cyclic of order n, with generator g such that (q, n) = 1. Let m be the multiplicative order of \overline{q} in the unit group $U(\mathbb{Z}_n)$. Then

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let \mathbb{F}_q denote a finite field with q elements, $C = C_n$ the cyclic of order n, with generator g such that (q, n) = 1. Let m be the multiplicative order of \overline{q} in the unit group $U(\mathbb{Z}_n)$. Then

(i) If e is an essential idempotent, then the dimension of $\mathbb{F}_q C \cdot e$ is precisely m.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let \mathbb{F}_q denote a finite field with q elements, $C = C_n$ the cyclic of order n, with generator g such that (q, n) = 1. Let m be the multiplicative order of \overline{q} in the unit group $U(\mathbb{Z}_n)$. Then

(i) If e is an essential idempotent, then the dimension of $\mathbb{F}_q C \cdot e$ is precisely m.

(*ii*) $dim(\mathbb{F}_q C_n)e_0 = \varphi(n)$ where φ denotes Euler's Totient function.

Let \mathbb{F}_q denote a finite field with q elements, $C = C_n$ the cyclic of order n, with generator g such that (q, n) = 1. Let m be the multiplicative order of \overline{q} in the unit group $U(\mathbb{Z}_n)$. Then

(i) If e is an essential idempotent, then the dimension of $\mathbb{F}_q C \cdot e$ is precisely m.

(*ii*) $dim(\mathbb{F}_q C_n)e_0 = \varphi(n)$ where φ denotes Euler's Totient function.

(*iii*) There exist precisely $\varphi(n)/m$ essential idempotents in $\mathbb{F}_q C$.

Definition (Sabin and Lomonaco (1995))

Let G_1 and G_2 denote two finite groups of the same order and let \mathbb{F} be a field. Two ideals (codes) $l_1 \subset \mathbb{F}G_1$ and $l_2 \subset \mathbb{F}G_2$ are said to be **combinatorially equivalent** if there exists a bijection $\gamma : G_1 \to G_2$ whose linear extension $\overline{\gamma} : \mathbb{F}G_1 \to \mathbb{F}G_2$ is such that $\overline{\gamma}(l_1) = l_2$. The map $\overline{\gamma}$ is called a **combinatorial equivalence** between l_1 and l_2 .

Definition (Sabin and Lomonaco (1995))

Let G_1 and G_2 denote two finite groups of the same order and let \mathbb{F} be a field. Two ideals (codes) $I_1 \subset \mathbb{F}G_1$ and $I_2 \subset \mathbb{F}G_2$ are said to be **combinatorially equivalent** if there exists a bijection $\gamma : G_1 \to G_2$ whose linear extension $\overline{\gamma} : \mathbb{F}G_1 \to \mathbb{F}G_2$ is such that $\overline{\gamma}(I_1) = I_2$. The map $\overline{\gamma}$ is called a **combinatorial equivalence** between I_1 and I_2 .

Theorem (Chalom, Ferraz and PM (2017))

Every minimal ideal in the group algebra of a finite abelian group is combinatorially equivalent to a minimal ideal in the group algebra of a cyclic group of the same order. Recall that a binary linear code of dimension k and length n is called **simplex** if a generating matrix for the code contains all possible non zero columns of length k. Since these are $2^k - 1$ in number, this matrix must be of size $k \times (2^k - 1)$ so, we must have $n = 2^k - 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall that a binary linear code of dimension k and length n is called **simplex** if a generating matrix for the code contains all possible non zero columns of length k. Since these are $2^k - 1$ in number, this matrix must be of size $k \times (2^k - 1)$ so, we must have $n = 2^k - 1$.

Theorem (Chalom, Ferraz and PM (2017))

Let C be a binary linear code of dimension k and length $n = 2^k - 1$. Then C is a simplex code if and only if it is essencial.

Let $C = \{v_1, \ldots, v_m\}$ be a linear code, whose elements we write as $v_i = (v_{i,1}, v_{i,2}, \ldots, v_{i,n}), 1 \le i \le k - 1, 1 \le i \le k - 1$. We say that C contains no zero column if, for each index $j, 1 \le j \le n$, there exists at least one vector $v_i \in C$ such that $v_{i,j} \ne 0$.

Let $C = \{v_1, \ldots, v_m\}$ be a linear code, whose elements we write as $v_i = (v_{i,1}, v_{i,2}, \ldots, v_{i,n}), 1 \le i \le k - 1, 1 \le i \le k - 1$. We say that C contains no zero column if, for each index $j, 1 \le j \le n$, there exists at least one vector $v_i \in C$ such that $v_{i,j} \ne 0$.

Theorem (Chalom, Ferraz and PM (2018))

Let C be a binary linear code of constant weight, without zero columns. Then C is equivalent to a cyclic code which is either essencial or a repetition code of an essencial one.

Twisted Group Algebra

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition

Let *G* be a group and *R* a commutative ring whose set of invertible elements we denote by U(R). Consider a set of symbols $\overline{G} = \{\overline{g} \mid g \in G\}$. The **twisted group algebra** of *G* over *R* with twisting *t*, denoted R^tG , is the set of finite sums

$$R^t G = \left\{ \sum_{g \in G} a_g \overline{g} \mid a_g \in R \right\}$$

where addition is defined componentwise and multiplication is given by the following rules

Definition

Let *G* be a group and *R* a commutative ring whose set of invertible elements we denote by U(R). Consider a set of symbols $\overline{G} = \{\overline{g} \mid g \in G\}$. The **twisted group algebra** of *G* over *R* with twisting *t*, denoted R^tG , is the set of finite sums

$$R^tG = \left\{\sum_{g\in G} a_g\overline{g} \mid a_g \in R\right\}$$

where addition is defined componentwise and multiplication is given by the following rules

$$ar{x}.ar{y} = t(x,y)\overline{xy}$$
 for all $x, y \in G$,
 $ar{x}a = aar{x}$ for all $x \in G$ and $a \in R$,

extended linearly.

Definition

Let *G* be a group and *R* a commutative ring whose set of invertible elements we denote by U(R). Consider a set of symbols $\overline{G} = \{\overline{g} \mid g \in G\}$. The **twisted group algebra** of *G* over *R* with twisting *t*, denoted R^tG , is the set of finite sums

$$R^t G = \left\{ \sum_{g \in G} a_g \overline{g} \mid a_g \in R \right\}$$

where addition is defined componentwise and multiplication is given by the following rules

$$ar{x}.ar{y} = t(x,y)\overline{xy}$$
 for all $x, y \in G$,
 $ar{x}a = aar{x}$ for all $x \in G$ and $a \in R$,

extended linearly. Here, the map $t : G \times G \rightarrow U(R)$ is called a **twisting** or a **factor set** if, for $x, y, z \in G$ we have that

$$t(g,h).t(gh,\ell) = t(h,\ell).t(g,h\ell).$$

. . .

There is a close connection between factor sets and 2-cocycles as used in cohomology, actually both concepts coincide (see, for example Lectures in Abstract Algebra - Jacobson).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

There is a close connection between factor sets and 2-cocycles as used in cohomology, actually both concepts coincide (see, for example Lectures in Abstract Algebra - Jacobson). Several results in this area can be proved via cohomological concepts but presently we shall use only classical ring theory.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

There is a close connection between factor sets and 2-cocycles as used in cohomology, actually both concepts coincide (see, for example Lectures in Abstract Algebra - Jacobson). Several results in this area can be proved via cohomological concepts but presently we shall use only classical ring theory.

We begin with a very special example of twisting.

There is a close connection between factor sets and 2-cocycles as used in cohomology, actually both concepts coincide (see, for example Lectures in Abstract Algebra - Jacobson). Several results in this area can be proved via cohomological concepts but presently we shall use only classical ring theory.

We begin with a very special example of twisting.

Let $C = \langle g \rangle$ be a cyclic group of order *n* and let λ be an invertible element in *R*. Then, the map $t_{\lambda} : C \times C \rightarrow U(R)$ given by

$$t_{\lambda}(g^{i},g^{j}) = \begin{cases} 1 & \text{if } i+j < n, \\ \lambda & \text{if } i+j \ge n. \end{cases}$$

is a twisting.

Let $C = \langle g \rangle$ be a cyclic group of order *n* and let $R^t C$ be its twisted group algebra over a commutative ring *R*. Set

$$\lambda = \prod_{\ell=1}^{n-1} t(g, g^{\ell}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Then $R^t C \cong R^{t_\lambda} C$ where t_λ is as above.

Let $C = \langle g \rangle$ be a cyclic group of order *n* and let $R^t C$ be its twisted group algebra over a commutative ring *R*. Set

$$\lambda = \prod_{\ell=1}^{n-1} t(g, g^\ell).$$

Then $R^t C \cong R^{t_\lambda} C$ where t_λ is as above.

The proof actually shows that $R^t C$ and $R^{t_{\lambda}} C$ are the same as sets, with the same operations, though constructed from different bases.

Let $C = \langle g \rangle$ be a cyclic group of order *n* and let $R^t C$ be its twisted group algebra over a commutative ring *R*. Set

$$\lambda = \prod_{\ell=1}^{n-1} t(g, g^\ell).$$

Then $R^t C \cong R^{t_\lambda} C$ where t_λ is as above.

The proof actually shows that $R^t C$ and $R^{t_{\lambda}} C$ are the same as sets, with the same operations, though constructed from different bases.

Corollary

The twisted group algebra of a cyclic group over a commutative ring is commutative.

Twistings for Abelian groups can be studied in a similar way.

(ロ)、(型)、(E)、(E)、 E) の(()

Twistings for Abelian groups can be studied in a similar way.

Given a finite Abelian group A, written as a direct product $A = C_{m_1} \times \cdots \times C_{m_s}$, where $C_{m_i} = \langle g_i \rangle$ is cyclic of order m_i , and invertible elements $\lambda_i \in R$, $1 \le i \le s$, set

$$t_{\lambda_i}(g_i^j, g_i^k) = egin{cases} 1, & ext{for } j+k < m_i, \ \lambda_i, & ext{for } j+k \geq m_i, \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

which is a twisting of $C_{m_i} = \langle g_i \rangle$ over R.

Twistings for Abelian groups can be studied in a similar way.

Given a finite Abelian group A, written as a direct product $A = C_{m_1} \times \cdots \times C_{m_s}$, where $C_{m_i} = \langle g_i \rangle$ is cyclic of order m_i , and invertible elements $\lambda_i \in R$, $1 \le i \le s$, set

$$t_{\lambda_i}(g_i^j, g_i^k) = egin{cases} 1, & ext{ for } j+k < m_i, \ \lambda_i, & ext{ for } j+k \geq m_i, \end{cases}$$

which is a twisting of $C_{m_i} = \langle g_i \rangle$ over R.

We denote by t_{Λ} the twisting of A defined as follows. Given $a = g_1^{i_1} \cdots g_s^{i_s}, \ b = g_1^{j_1} \cdots g_s^{j_s} \in A$ we set:

$$t_{\Lambda}(a,b) = t_{\Lambda}(g_1^{i_1}\cdots g_s^{i_s}, g_1^{j_1}\cdots g_s^{j_s}) = \prod_{k=1}^s t_{\lambda_k}(g_k^{i_k}, g_k^{j_k}).$$

where $\Lambda = (\lambda_1, \ldots, \lambda_s)$.

Proposition

Let t be a twisting of A over \mathbb{F} such that $R^{t}A$ is commutative. Then, $R^{t}A \cong R^{t_{\Lambda}}A$ for some twisting t_{Λ} as defined above. Conversely, a twisted group algebra of the form $R^{t_{\Lambda}}A$ is commutative.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposition

Let t be a twisting of A over \mathbb{F} such that $R^{t}A$ is commutative. Then, $R^{t}A \cong R^{t_{\Lambda}}A$ for some twisting t_{Λ} as defined above. Conversely, a twisted group algebra of the form $R^{t_{\Lambda}}A$ is commutative.

The next elementary result is of interest to establish a connection to coding theory.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposition

Let t be a twisting of A over \mathbb{F} such that $R^{t}A$ is commutative. Then, $R^{t}A \cong R^{t_{\Lambda}}A$ for some twisting t_{Λ} as defined above. Conversely, a twisted group algebra of the form $R^{t_{\Lambda}}A$ is commutative.

The next elementary result is of interest to establish a connection to coding theory.

Proposition

Let $C = \langle g \rangle$ be a cyclic group of order n, R a commutative ring and λ an invertible element in R. Let $R^{t_{\lambda}}C$ be the corresponding twisted group algebra. Then

$$R^{t_{\lambda}}C\cong rac{R[X]}{(X^n-\lambda)}.$$

(日) (日)

We wish to study subgroup idempotents as in group algebras; however their definition needs to be modified to adapt it to products with a twisting.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

We wish to study subgroup idempotents as in group algebras; however their definition needs to be modified to adapt it to products with a twisting.

Proposition

Let $C = \langle g \rangle$ be a cyclic group of order n and $t = t_{\lambda}$, with λ in a field \mathbb{F} , a twisting of C over \mathbb{F} . Given a root $\alpha \in \mathbb{K}$, $X^n - \lambda$ where \mathbb{K} denotes the splitting field of $X^n - \lambda$, we set

$$\widehat{C}_{\alpha} = \frac{1}{n} \sum_{j=0}^{n-1} \alpha^{-j} \overline{g}^j.$$

Then, \widehat{C}_{α} is an idempotent of the twisted group algebra $\mathbb{F}^{t_{\lambda}}C$.

We wish to study subgroup idempotents as in group algebras; however their definition needs to be modified to adapt it to products with a twisting.

Proposition

Let $C = \langle g \rangle$ be a cyclic group of order n and $t = t_{\lambda}$, with λ in a field \mathbb{F} , a twisting of C over \mathbb{F} . Given a root $\alpha \in \mathbb{K}$, $X^n - \lambda$ where \mathbb{K} denotes the splitting field of $X^n - \lambda$, we set

$$\widehat{C}_{\alpha} = \frac{1}{n} \sum_{j=0}^{n-1} \alpha^{-j} \overline{g}^j.$$

Then, \widehat{C}_{α} is an idempotent of the twisted group algebra $\mathbb{F}^{t_{\lambda}}C$. Moreover, if $\beta \neq \alpha$ is another root of $X^n - \lambda$, then $\widehat{C}_{\alpha}\widehat{C}_{\beta} = 0$.

Lemma

Let $\mathbb{K}^t C$ be the twisted group algebra of a cyclic group $C = \langle g \rangle$, of order *n*, and \mathbb{K} algebraically closed field such that $char(K) \nmid |G|$. Set λ as needed and let $\{\alpha_i\}_{1 \leq i \leq n}$ be the set of all roots of the polynomial $X^n - \lambda$ in \mathbb{K} . Then

$$\{\widehat{C}_{\alpha_i}\mid 1\leq i\leq n\},\$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is the set of all primitive idempotents of $\mathbb{F}^t C$.

Lemma

Let $\mathbb{K}^t C$ be the twisted group algebra of a cyclic group $C = \langle g \rangle$, of order *n*, and \mathbb{K} algebraically closed field such that $char(K) \nmid |G|$. Set λ as needed and let $\{\alpha_i\}_{1 \leq i \leq n}$ be the set of all roots of the polynomial $X^n - \lambda$ in \mathbb{K} . Then

$$\{\widehat{C}_{\alpha_i}\mid 1\leq i\leq n\},\$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is the set of all primitive idempotents of $\mathbb{F}^t C$.

As before, this result can be extended to finite Abelian groups.

Let A be a finite Abelian group written as a direct product $A = C_{m_1} \times \cdots \times C_{m_s}$, where $C_{m_i} = \langle g_i \rangle$ is cyclic of order m_i , and \mathbb{F} a finite field. Assume that the twisted group algebra $\mathbb{F}^t A$ is endowed with a twisting t_A as defined above, with $\lambda_i \in F$, $1 \le i \le s$. Let \mathbb{K} be the splitting field of the polynomial $f = \prod_{i=1}^t (X^{m_i} - \lambda_i)$, and let $\mathcal{R}_i = \{\alpha_{ij} \mid 1 \le j \le m_i\}$ be the set of all roots of the polynomial $X^{m_i} - \lambda_i$, $1 \le i \le m_i$ in \mathbb{K} . For each subset of roots $\alpha = (\alpha_{1i_1}, \ldots, \alpha_{si_s}) \in \mathcal{R}$, we set:

$$e_{\alpha} = \widehat{(\mathcal{C}_{m_1})}_{\alpha_{1j_1}} \cdots \widehat{(\mathcal{C}_{m_s})}_{\alpha_{sj_s}},$$

Then

$$\{\mathbf{e}_{\alpha} \mid \alpha \in \mathcal{R}\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is the set of primitive idempotents of $\mathbb{K}^t A$.

The case of a finite Abelian group can be reduced to the previous one due to a simple remark.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The case of a finite Abelian group can be reduced to the previous one due to a simple remark.

Lemma

Let *A* be a finite Abelian group, *R* a commutative ring, R^tA the corresponding twisted group algebra and $A_0 = \{a \in A \mid t(a, h) = t(h, a), \forall h \in A\}$ the set of regular elements of *A*. Let t_0 be the twisting of A_0 obtained by restriction of *t*. Then, the center of \mathbb{F}^tA is the twisted group algebra

$$Z(\mathbb{F}^{t}A) = \mathbb{F}^{t_0}A_0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The case of a finite Abelian group can be reduced to the previous one due to a simple remark.

Lemma

Let *A* be a finite Abelian group, *R* a commutative ring, R^tA the corresponding twisted group algebra and $A_0 = \{a \in A \mid t(a, h) = t(h, a), \forall h \in A\}$ the set of regular elements of *A*. Let t_0 be the twisting of A_0 obtained by restriction of *t*. Then, the center of \mathbb{F}^tA is the twisted group algebra

$$Z(\mathbb{F}^{t}A) = \mathbb{F}^{t_0}A_0.$$

Since the central primitive idempotents of a semisimple algebra are also the primitive idempotents of its center, to find the primitive idempotents of a twisted group algebra of the form $\mathbb{K}^t A$, using the lemma above, all we need is to determine A_0 , its set of regular elements and then use the previous Theorem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ▲ ●

With the notations above, let $\mathcal{G} = Gal(\mathbb{K}, \mathbb{F})$ be the Galois group of \mathbb{K} over \mathbb{F} . For $\sigma \in \mathcal{G}$ and $\alpha = (\alpha_{1i_1}, \ldots, \alpha_{si_s}) \in \mathcal{R}$, we set

$$\sigma \cdot \alpha = (\alpha_{1i_1}^{\sigma}, \ldots, \alpha_{si_s}^{\sigma}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

With the notations above, let $\mathcal{G} = Gal(\mathbb{K}, \mathbb{F})$ be the Galois group of \mathbb{K} over \mathbb{F} . For $\sigma \in \mathcal{G}$ and $\alpha = (\alpha_{1i_1}, \ldots, \alpha_{si_s}) \in \mathcal{R}$, we set

$$\sigma \cdot \alpha = (\alpha_{1i_1}^{\sigma}, \ldots, \alpha_{si_s}^{\sigma}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thus, \mathcal{G} acts on \mathcal{R} .

With the notations above, let $\mathcal{G} = Gal(\mathbb{K}, \mathbb{F})$ be the Galois group of \mathbb{K} over \mathbb{F} . For $\sigma \in \mathcal{G}$ and $\alpha = (\alpha_{1i_1}, \ldots, \alpha_{si_s}) \in \mathcal{R}$, we set

$$\sigma \cdot \alpha = (\alpha_{1i_1}^{\sigma}, \ldots, \alpha_{si_s}^{\sigma}).$$

Thus, \mathcal{G} acts on \mathcal{R} .

We also define an action of \mathcal{G} on $\mathbb{K}^{t_{\Lambda}}A$ setting:

$$\sigma\Big(\sum_{\mathbf{a}\in A}b_{\mathbf{a}}\overline{\mathbf{a}}\Big)=\sum_{\mathbf{a}\in A}b_{\mathbf{a}}^{\sigma}\overline{\mathbf{a}}\quad \sigma\in\mathcal{G}.$$

If $\sigma \in \mathcal{G}$, then it follows easily that $\sigma(e_{\alpha}) = e_{\sigma \cdot \alpha}$.

With the notations above, let $\mathcal{G} = Gal(\mathbb{K}, \mathbb{F})$ be the Galois group of \mathbb{K} over \mathbb{F} . For $\sigma \in \mathcal{G}$ and $\alpha = (\alpha_{1i_1}, \ldots, \alpha_{si_s}) \in \mathcal{R}$, we set

$$\sigma \cdot \alpha = (\alpha_{1i_1}^{\sigma}, \ldots, \alpha_{si_s}^{\sigma}).$$

Thus, \mathcal{G} acts on \mathcal{R} .

We also define an action of \mathcal{G} on $\mathbb{K}^{t_{\Lambda}}A$ setting:

$$\sigma\Big(\sum_{\mathbf{a}\in A}b_{\mathbf{a}}\overline{\mathbf{a}}\Big)=\sum_{\mathbf{a}\in A}b_{\mathbf{a}}^{\sigma}\overline{\mathbf{a}}\quad \sigma\in\mathcal{G}.$$

If $\sigma \in \mathcal{G}$, then it follows easily that $\sigma(e_{\alpha}) = e_{\sigma \cdot \alpha}$. Hence, for $\alpha \in \mathcal{R}$ and $\sigma \in \mathcal{G}$, we get $\sigma(e_{\alpha}) = e_{\sigma \cdot \alpha}$. Since $e_{\sigma \cdot \alpha}$ is also a primitive central idempotent, we have \mathcal{G} acting on $\{e_{\alpha} \mid \alpha \in \mathcal{R}\}$. We denote Finally, we see how to obtain the idempotents of the original twisted group algebra $\mathbb{F}^t A$ via the process known as Galois descent.

With the notations above, let $\mathcal{G} = Gal(\mathbb{K}, \mathbb{F})$ be the Galois group of \mathbb{K} over \mathbb{F} . For $\sigma \in \mathcal{G}$ and $\alpha = (\alpha_{1i_1}, \ldots, \alpha_{si_s}) \in \mathcal{R}$, we set

$$\sigma \cdot \alpha = (\alpha_{1i_1}^{\sigma}, \ldots, \alpha_{si_s}^{\sigma}).$$

Thus, \mathcal{G} acts on \mathcal{R} .

We also define an action of \mathcal{G} on $\mathbb{K}^{t_{\Lambda}}A$ setting:

$$\sigma\Big(\sum_{\mathbf{a}\in A}b_{\mathbf{a}}\overline{\mathbf{a}}\Big)=\sum_{\mathbf{a}\in A}b_{\mathbf{a}}^{\sigma}\overline{\mathbf{a}}\quad \sigma\in\mathcal{G}.$$

If $\sigma \in \mathcal{G}$, then it follows easily that $\sigma(e_{\alpha}) = e_{\sigma \cdot \alpha}$. Hence, for $\alpha \in \mathcal{R}$ and $\sigma \in \mathcal{G}$, we get $\sigma(e_{\alpha}) = e_{\sigma \cdot \alpha}$. Since $e_{\sigma \cdot \alpha}$ is also a primitive central idempotent, we have \mathcal{G} acting on $\{e_{\alpha} \mid \alpha \in \mathcal{R}\}$. We denote

$$S_{\alpha} = \{ \sigma \cdot \alpha \, | \, \sigma \in \mathcal{G} \}.$$

Finally, we see how to obtain the idempotents of the original twisted group algebra $\mathbb{F}^t A$ via the process known as Galois descent.

With the notations above, let $\mathcal{G} = Gal(\mathbb{K}, \mathbb{F})$ be the Galois group of \mathbb{K} over \mathbb{F} . For $\sigma \in \mathcal{G}$ and $\alpha = (\alpha_{1i_1}, \ldots, \alpha_{si_s}) \in \mathcal{R}$, we set

$$\sigma \cdot \alpha = (\alpha_{1i_1}^{\sigma}, \ldots, \alpha_{si_s}^{\sigma}).$$

Thus, \mathcal{G} acts on \mathcal{R} .

We also define an action of \mathcal{G} on $\mathbb{K}^{t_{\Lambda}}A$ setting:

$$\sigma\Big(\sum_{\mathbf{a}\in A}b_{\mathbf{a}}\overline{\mathbf{a}}\Big)=\sum_{\mathbf{a}\in A}b_{\mathbf{a}}^{\sigma}\overline{\mathbf{a}}\quad \sigma\in\mathcal{G}.$$

If $\sigma \in \mathcal{G}$, then it follows easily that $\sigma(e_{\alpha}) = e_{\sigma \cdot \alpha}$. Hence, for $\alpha \in \mathcal{R}$ and $\sigma \in \mathcal{G}$, we get $\sigma(e_{\alpha}) = e_{\sigma \cdot \alpha}$. Since $e_{\sigma \cdot \alpha}$ is also a primitive central idempotent, we have \mathcal{G} acting on $\{e_{\alpha} \mid \alpha \in \mathcal{R}\}$. We denote

$$S_{\alpha} = \{ \sigma \cdot \alpha \, | \, \sigma \in \mathcal{G} \}.$$

If $\alpha \in \mathcal{R}$, then $\widetilde{e_{\alpha}} = \sum_{\beta \in S_{\alpha}} e_{\beta}$ is a primitive idempotent of $\mathbb{F}^{t_{\Lambda}}A$. In addition, every primitive idempotent of $\mathbb{F}^{t_{\Lambda}}A$ is of form $\widetilde{e_{\alpha}}$ for some $\alpha \in \mathcal{R}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If $\alpha \in \mathcal{R}$, then $\widetilde{e_{\alpha}} = \sum_{\beta \in S_{\alpha}} e_{\beta}$ is a primitive idempotent of $\mathbb{F}^{t_{\Lambda}}A$. In addition, every primitive idempotent of $\mathbb{F}^{t_{\Lambda}}A$ is of form $\widetilde{e_{\alpha}}$ for some $\alpha \in \mathcal{R}$.

Set

$$St(\alpha) = \{ \sigma \in \mathcal{G} \mid \sigma \cdot \alpha = \alpha \},\$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

the *stabilizer* of α in \mathcal{G} .

If $\alpha \in \mathcal{R}$, then $\widetilde{e_{\alpha}} = \sum_{\beta \in S_{\alpha}} e_{\beta}$ is a primitive idempotent of $\mathbb{F}^{t_{\Lambda}}A$. In addition, every primitive idempotent of $\mathbb{F}^{t_{\Lambda}}A$ is of form $\widetilde{e_{\alpha}}$ for some $\alpha \in \mathcal{R}$.

Set

$$St(\alpha) = \{ \sigma \in \mathcal{G} \mid \sigma \cdot \alpha = \alpha \},\$$

the *stabilizer* of α in \mathcal{G} .

For an idempotent $e_{\alpha} = \sum_{a \in A} k_a \overline{a}$ we can obtain the expression of the corresponding $\tilde{e_{\alpha}}$ in $\mathbb{F}^t A$:

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

If $\alpha \in \mathcal{R}$, then $\widetilde{e_{\alpha}} = \sum_{\beta \in S_{\alpha}} e_{\beta}$ is a primitive idempotent of $\mathbb{F}^{t_{\Lambda}}A$. In addition, every primitive idempotent of $\mathbb{F}^{t_{\Lambda}}A$ is of form $\widetilde{e_{\alpha}}$ for some $\alpha \in \mathcal{R}$.

Set

$$St(\alpha) = \{ \sigma \in \mathcal{G} \mid \sigma \cdot \alpha = \alpha \},\$$

the *stabilizer* of α in \mathcal{G} .

For an idempotent $e_{\alpha} = \sum_{a \in A} k_a \overline{a}$ we can obtain the expression of the corresponding $\tilde{e_{\alpha}}$ in $\mathbb{F}^t A$:

$$\widetilde{e_{\alpha}} = \frac{1}{|St(\alpha)|} \sum_{a \in A} tr_{\mathbb{K}|\mathbb{F}}(k_a)\overline{a}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The simple components

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

If a group *G* contains a central subgroup *N* of regular elements, then its twisted group algebra $R^t G$ over a commutative ring *R* can also be realized as a twisted group algebra $RN^{\gamma}[G/N]$ of the factor group G/N over the commutative ring *RN*.

If a group G contains a central subgroup N of regular elements, then its twisted group algebra $R^t G$ over a commutative ring R can also be realized as a twisted group algebra $RN^{\gamma}[G/N]$ of the factor group G/N over the commutative ring RN.

Let A be a finite Abelian group, A_0 the subgroup of its regular elements. Then:

 $\mathbb{F}^{t}A = (\mathbb{F}^{t}A_{0})^{\gamma}(A/A_{0}).$

If a group G contains a central subgroup N of regular elements, then its twisted group algebra $R^t G$ over a commutative ring R can also be realized as a twisted group algebra $RN^{\gamma}[G/N]$ of the factor group G/N over the commutative ring RN.

Let A be a finite Abelian group, A_0 the subgroup of its regular elements. Then:

$$\mathbb{F}^{t}A = (\mathbb{F}^{t}A_{0})^{\gamma}(A/A_{0}).$$

If $\tilde{e} \in \mathbb{F}^t A$ is a primitive idempotent then:

$$\mathbb{F}^{t}A\widetilde{e} = (\mathbb{F}^{t}A_{0})^{\gamma}(A/A_{0})\widetilde{e} = (\mathbb{F}^{t}A_{0}\widetilde{e}e)^{\gamma}(A/A_{0}).$$

If a group *G* contains a central subgroup *N* of regular elements, then its twisted group algebra $R^t G$ over a commutative ring *R* can also be realized as a twisted group algebra $RN^{\gamma}[G/N]$ of the factor group G/N over the commutative ring *RN*.

Let A be a finite Abelian group, A_0 the subgroup of its regular elements. Then:

$$\mathbb{F}^{t}A = (\mathbb{F}^{t}A_{0})^{\gamma}(A/A_{0}).$$

If $\tilde{e} \in \mathbb{F}^t A$ is a primitive idempotent then:

$$\mathbb{F}^{t}A\widetilde{e} = (\mathbb{F}^{t}A_{0})^{\gamma}(A/A_{0})\widetilde{e} = (\mathbb{F}^{t}A_{0}\widetilde{e}e)^{\gamma}(A/A_{0}).$$

The simple component $\mathbb{F}^t A_0 \tilde{e}$ of $\mathbb{F}^t A_0$ is a field, since $\mathbb{F}^t A_0 = \mathcal{Z}(\mathbb{F}^t A)$ is commutative.

・ロト ・西ト ・ヨト ・ヨー うへぐ

Theorem

$$\mathbb{F}^{t}A\widetilde{e}\cong M_{d}(\mathbb{F}^{t}A_{0}\widetilde{e}),$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

where $d = \sqrt{[A : A_0]}$.

Theorem

$$\mathbb{F}^{t}A\widetilde{e}\cong M_{d}(\mathbb{F}^{t}A_{0}\widetilde{e}),$$

where $d = \sqrt{[A : A_0]}$.

Assume that $A_0 = C_{m_1} \times \cdots \times C_{m_s}$, where $C_{m_i} = \langle g_i \rangle$ is cyclic of order m_i . Since $\mathbb{F}^t A_0$ is commutative, there exists invertible elements $\lambda_i \in \mathbb{F}$, $1 \leq i \leq s$, such that $\mathbb{F}^t A_0 = \mathbb{F}^{t_\Lambda} A_0$, where $\Lambda = (\lambda_1, \ldots, \lambda_s)$. Let \mathbb{K} , \mathcal{R} and $\widetilde{e_\alpha}$, for some $\alpha \in \mathcal{R}$, be as constructed in the corresponding Theorem.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

$$\mathbb{F}^{t}A\widetilde{e}\cong M_{d}(\mathbb{F}^{t}A_{0}\widetilde{e}),$$

where $d = \sqrt{[A : A_0]}$.

Assume that $A_0 = C_{m_1} \times \cdots \times C_{m_s}$, where $C_{m_i} = \langle g_i \rangle$ is cyclic of order m_i . Since $\mathbb{F}^t A_0$ is commutative, there exists invertible elements $\lambda_i \in \mathbb{F}$, $1 \leq i \leq s$, such that $\mathbb{F}^t A_0 = \mathbb{F}^{t_\Lambda} A_0$, where $\Lambda = (\lambda_1, \ldots, \lambda_s)$. Let \mathbb{K} , \mathcal{R} and $\tilde{e_\alpha}$, for some $\alpha \in \mathcal{R}$, be as constructed in the corresponding Theorem.

Theorem

$$\mathbb{F}^{t}A_{0} \widetilde{e_{\alpha}} \cong \mathbb{F}(\alpha)$$
 and $[\mathbb{F}^{t}A_{0} \widetilde{e_{\alpha}} : \mathbb{F}] = |S_{\alpha}|.$

Essential Idempotents

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

We need to extend the construction of idempotents given given above for cyclic subgroups.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

We need to extend the construction of idempotents given given above for cyclic subgroups.

Proposition

Let t be a twisting of an Abelian group A over a field \mathbb{F} and let A_0 be the set of t-regular elements of A. Let H be a subgroup of A_0 and assume that for each element $h \in H$ there exists $\beta_h \in \mathbb{F}^*$, such that $t(h, k) = \beta_h \beta_k \beta_{hk}^{-1}$, for all $h, k \in H$. Then

$$\widehat{H}_{\beta} = \frac{1}{|H|} \sum_{h \in H} \beta_h^{-1} \overline{h}.$$

is a central idempotent of $\mathbb{F}^{t}A$.

We need to extend the construction of idempotents given given above for cyclic subgroups.

Proposition

Let t be a twisting of an Abelian group A over a field \mathbb{F} and let A_0 be the set of t-regular elements of A. Let H be a subgroup of A_0 and assume that for each element $h \in H$ there exists $\beta_h \in \mathbb{F}^*$, such that $t(h, k) = \beta_h \beta_k \beta_{hk}^{-1}$, for all $h, k \in H$. Then

$$\widehat{H}_{\beta} = \frac{1}{|H|} \sum_{h \in H} \beta_h^{-1} \overline{h}.$$

is a central idempotent of $\mathbb{F}^{t}A$.

Definition

With the notations above, let H be a subgroup of A_0 and $\beta : H \to \mathbb{F}^*$ a map denoted as $\beta(h) = \beta_h$, for all $h \in H$. We say that the (H, β) is a *t*-admissible pair, if $t(h, k) = \beta_h \beta_k \beta_{hk}^{-1}$, for all $h, k \in H$.

Let (H,β) be a *t*-admissible pair and let τ be a left transversal of H in G. Then,

$$\mathcal{B} = \{ar{g}\widehat{\mathcal{H}}_eta\,|\,g\in au\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

is a basis of $\mathbb{F}^t G \widehat{H}_\beta$ as a vector space over \mathbb{F} .

Let (H,β) be a *t*-admissible pair and let τ be a left transversal of H in G. Then,

$$\mathcal{B} = \{ ar{g} \widehat{\mathcal{H}}_{eta} \, | \, g \in au \}$$

is a basis of $\mathbb{F}^t G \widehat{H}_\beta$ as a vector space over \mathbb{F} .

This basis can be used to show that the code defined by $\mathbb{F}^t G \widehat{H}_{\beta}$ is equivalent to a repetition code.

Let (H,β) be a *t*-admissible pair and let τ be a left transversal of H in G. Then,

$$\mathcal{B} = \{ ar{g} \widehat{\mathcal{H}}_{eta} \, | \, g \in au \}$$

is a basis of $\mathbb{F}^t G \widehat{H}_\beta$ as a vector space over \mathbb{F} .

This basis can be used to show that the code defined by $\mathbb{F}^t G \widehat{H}_{\beta}$ is equivalent to a repetition code.

As in the case of group algebras, we have that if $e \in \mathbb{F}^t G$ is a primitive central idempotent, then

Let (H, β) be a *t*-admissible pair and let τ be a left transversal of H in G. Then,

$$\mathcal{B} = \{ ar{g} \widehat{\mathcal{H}}_{eta} \, | \, g \in au \}$$

is a basis of $\mathbb{F}^t G \widehat{H}_\beta$ as a vector space over \mathbb{F} .

This basis can be used to show that the code defined by $\mathbb{F}^t G \widehat{H}_{\beta}$ is equivalent to a repetition code.

As in the case of group algebras, we have that if $e \in \mathbb{F}^t G$ is a primitive central idempotent, then

• If e is not a constituent of \widehat{H}_{β} we have $e\widehat{H}_{\beta} = 0$.

Let (H, β) be a *t*-admissible pair and let τ be a left transversal of H in G. Then,

$$\mathcal{B} = \{ ar{g} \widehat{\mathcal{H}}_{eta} \, | \, g \in au \}$$

is a basis of $\mathbb{F}^t G \widehat{H}_\beta$ as a vector space over \mathbb{F} .

This basis can be used to show that the code defined by $\mathbb{F}^t G \widehat{H}_{\beta}$ is equivalent to a repetition code.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

As in the case of group algebras, we have that if $e \in \mathbb{F}^t G$ is a primitive central idempotent, then

- If e is not a constituent of \widehat{H}_{β} we have $e\widehat{H}_{\beta} = 0$.
- If e is a constituent of \widehat{H}_{β} we have $e\widehat{H}_{\beta} = e$.

Let $e \in \mathbb{F}^t A$ be a primitive central idempotent. We say that e is an **essential idempotent** if $e\hat{H}_{\beta} = 0$, for all *t*-essential pair (H, β) with $H \neq \{1\}$. A minimal ideal of $\mathbb{F}^t G$ is called an **essential ideal** if it is generated by an essential idempotent and **non essential** otherwise.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let $e \in \mathbb{F}^t A$ be a primitive central idempotent. We say that e is an **essential idempotent** if $e\hat{H}_{\beta} = 0$, for all *t*-essential pair (H, β) with $H \neq \{1\}$. A minimal ideal of $\mathbb{F}^t G$ is called an **essential ideal** if it is generated by an essential idempotent and **non essential** otherwise.

To discuss the existence of essential idempotents we introduce the following.

Let $e \in \mathbb{F}^t A$ be a primitive central idempotent. We say that e is an **essential idempotent** if $e\hat{H}_{\beta} = 0$, for all *t*-essential pair (H, β) with $H \neq \{1\}$. A minimal ideal of $\mathbb{F}^t G$ is called an **essential ideal** if it is generated by an essential idempotent and **non essential** otherwise.

To discuss the existence of essential idempotents we introduce the following.

Definition

Let e be a primitive central idempotent of $\mathbb{F}^{t}A$. The subgroup

$$K_e = \{ g \in A \mid \bar{g} \ e = \beta_g \ e, \text{ for some } \beta_g \in \mathbb{F} \}$$
(1)

of A is called the **kernel** of e.

Let $e \in \mathbb{F}^t A$ be a primitive central idempotent. We say that e is an **essential idempotent** if $e\hat{H}_{\beta} = 0$, for all *t*-essential pair (H, β) with $H \neq \{1\}$. A minimal ideal of $\mathbb{F}^t G$ is called an **essential ideal** if it is generated by an essential idempotent and **non essential** otherwise.

To discuss the existence of essential idempotents we introduce the following.

Definition

Let e be a primitive central idempotent of $\mathbb{F}^{t}A$. The subgroup

$$K_e = \{ g \in A \mid \bar{g} \ e = \beta_g \ e, \text{ for some } \beta_g \in \mathbb{F} \}$$
(1)

of A is called the kernel of e.

A straightforward computation shows that $K_e \subset A_0$ and that (K_e, β) is an t-admissible pair.

We consider the idempotent

$$\widehat{\mathcal{K}_{e\beta}} = \frac{1}{|\mathcal{K}_{e}|} \sum_{k \in \mathcal{K}_{e}} \beta_{k}^{-1} \bar{k} \in \mathbb{F}^{t} A.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

We consider the idempotent

$$\widehat{\mathcal{K}_{e\beta}} = \frac{1}{|\mathcal{K}_{e}|} \sum_{k \in \mathcal{K}_{e}} \beta_{k}^{-1} \bar{k} \in \mathbb{F}^{t} \mathcal{A}.$$

Theorem

A primitive central idempotent $e \in \mathbb{F}^t G$ is an essential idempotent if, and only if, $K_e = \{1\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We consider the idempotent

$$\widehat{\mathcal{K}_{e\beta}} = \frac{1}{|\mathcal{K}_{e}|} \sum_{k \in \mathcal{K}_{e}} \beta_{k}^{-1} \bar{k} \in \mathbb{F}^{t} A.$$

Theorem

A primitive central idempotent $e \in \mathbb{F}^t G$ is an essential idempotent if, and only if, $K_e = \{1\}$.

Set $\Gamma_e = \{a\bar{g}e \mid a \in \mathbb{F}^*, g \in A_0\}$ and denote $\mathcal{U}(\mathbb{F}^t A)$ the group of units of $\mathbb{F}^t A$. Notice that Γ_e is a central multiplicative subgroup of $\mathcal{U}(\mathbb{F}^t A)$ containing the subgroup $\mathbb{F}^* e$. We define

$$\pi: A_0 \to \frac{\Gamma_e}{\mathbb{F}^* e} \quad \text{by } \pi(g) = [\bar{g}e],$$
 (2)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

where $[\bar{g}e]$ denotes the class of $\bar{g}e$ in Γ_e/\mathbb{F}^*e .

A primitive central idempotent $e \in \mathbb{F}^t A$ is essential if, and only if π is a group isomorphism.

A primitive central idempotent $e \in \mathbb{F}^t A$ is essential if, and only if π is a group isomorphism.

Corollary

Let A be a finite abelian group. If $\mathbb{F}^t G$ contains an essential idempotent, then A_0 is cyclic.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

A primitive central idempotent $e \in \mathbb{F}^t A$ is essential if, and only if π is a group isomorphism.

Corollary

Let A be a finite abelian group. If $\mathbb{F}^t G$ contains an essential idempotent, then A_0 is cyclic.

We now investigate if $\mathbb{F}^{t_0}A_0$ contains essential idempotents in the case when A_0 cyclic.

A primitive central idempotent $e \in \mathbb{F}^t A$ is essential if, and only if π is a group isomorphism.

Corollary

Let A be a finite abelian group. If $\mathbb{F}^t G$ contains an essential idempotent, then A_0 is cyclic.

We now investigate if $\mathbb{F}^{t_0}A_0$ contains essential idempotents in the case when A_0 cyclic.

Lemma

Let p be a prime integer with gcd(p, q) = 1 and assume that $X^p - \lambda \in \mathbb{F}[X]$ is a reducible polynomial. Then, either $X^p - \lambda$ has a unique root in \mathbb{F} or it splits in \mathbb{F} as a product of distinct linear factors.

Let p be a prime integer with gcd(p,q) = 1 such that p divides n. If $X^p - \lambda$ splits in \mathbb{F} into distinct linear factors, then $\mathbb{F}^t C$ does not contain essential idempotents.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let p be a prime integer with gcd(p, q) = 1 such that p divides n. If $X^p - \lambda$ splits in \mathbb{F} into distinct linear factors, then $\mathbb{F}^t C$ does not contain essential idempotents.

Assume that each polynomial $X^{p_i} - \lambda$ which is reducible in $\mathbb{F}[X]$ contains a unique root in \mathbb{F} , $1 \leq i \leq r$ and set

 $\mathcal{E} = \{ 1 \le i \le r \, | \, X^{p_i} - \lambda \text{ is reducible in } \mathbb{F}[X] \}.$

If $i \in \mathcal{E}$, then there exists a unique $b_i \in \mathbb{F}$ such that $b_i^{p_i} = \lambda$. In this case set $h_i = g_i^{p_i^{n_i-1}}$, $H_i = \langle h_i \rangle$ and $\beta_i(h_i^j) = b_i^j$.

Let p be a prime integer with gcd(p,q) = 1 such that p divides n. If $X^p - \lambda$ splits in \mathbb{F} into distinct linear factors, then $\mathbb{F}^t C$ does not contain essential idempotents.

Assume that each polynomial $X^{p_i} - \lambda$ which is reducible in $\mathbb{F}[X]$ contains a unique root in \mathbb{F} , $1 \leq i \leq r$ and set

 $\mathcal{E} = \{1 \le i \le r \,|\, X^{p_i} - \lambda \text{ is reducible in } \mathbb{F}[X]\}.$

If $i \in \mathcal{E}$, then there exists a unique $b_i \in \mathbb{F}$ such that $b_i^{p_i} = \lambda$. In this case set $h_i = g_i^{p_i^{n_i-1}}$, $H_i = \langle h_i \rangle$ and $\beta_i(h_i^j) = b_i^j$.

Then, (H_i, β_i) is a *t*-admissible pair for all $i \in \mathcal{E}$. Set

$$e_0 = \prod_{i \in \mathcal{E}} (1 - \widehat{H_i}_{\beta_i}),$$

which is a central idempotent of $\mathbb{F}^t G$.

Assume that A_0 is cyclic group. Then, a primitive central idempotent $e \in \mathbb{F}^t A$ is essential if and only if $ee_0 = e$.

Assume that A_0 is cyclic group. Then, a primitive central idempotent $e \in \mathbb{F}^t A$ is essential if and only if $ee_0 = e$.

Notice that the proposition above implies that e_0 is precisely the sum of all essential idempotents in $\mathbb{F}^t A$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Assume that A_0 is cyclic group. Then, a primitive central idempotent $e \in \mathbb{F}^t A$ is essential if and only if $ee_0 = e$.

Notice that the proposition above implies that e_0 is precisely the sum of all essential idempotents in $\mathbb{F}^t A$.

Theorem

With the notation above the twisted group algebra $\mathbb{F}^t A$ contains an essential idempotent if and only if A_0 is cyclic and such that each polynomial $X^{p_i} - \lambda$ which is reducible in $\mathbb{F}[X]$ contains a unique root in \mathbb{F} , $1 \leq i \leq r$

Assume that A_0 is cyclic group. Then, a primitive central idempotent $e \in \mathbb{F}^t A$ is essential if and only if $ee_0 = e$.

Notice that the proposition above implies that e_0 is precisely the sum of all essential idempotents in $\mathbb{F}^t A$.

Theorem

With the notation above the twisted group algebra $\mathbb{F}^t A$ contains an essential idempotent if and only if A_0 is cyclic and such that each polynomial $X^{p_i} - \lambda$ which is reducible in $\mathbb{F}[X]$ contains a unique root in \mathbb{F} , $1 \leq i \leq r$

Theorem

Let A be a cyclic group of order n and $n = \prod_{i=1}^{r} p_i^{n_i}$ the prime factorization of n. Let $\lambda \in \mathbb{F}$ be an element of multiplicative order m and set $t = t_{\lambda}$. Then, the twisted group algebra $\mathbb{F}^t A$ contains an essential idempotent if and only if p_i does not divide (q-1)/m, $1 \le i \le r$.

Example

Let \mathbb{F} be the field \mathbb{F}_7 , $A = C_8 = \langle g \rangle$ and let t be the twisting of A over \mathbb{F} defined by

$$t(g^{i},g^{j}) = \begin{cases} 1, & i+j < n \\ 3, & i+j \ge n. \end{cases}$$

As $X^8 - 3$ has no roots in \mathbb{F} , we see that there is no *t*-admissible pair (H, β) with $H \neq \{1\}$, so every primitive central idempotent of $\mathbb{F}^t G$ is essential.

Example

Let \mathbb{F} be the field \mathbb{F}_7 , $A = C_8 = \langle g \rangle$ and let t be the twisting of A over \mathbb{F} defined by

$$t(g^{i},g^{j}) = \begin{cases} 1, & i+j < n \\ 3, & i+j \ge n. \end{cases}$$

As $X^8 - 3$ has no roots in \mathbb{F} , we see that there is no *t*-admissible pair (H, β) with $H \neq \{1\}$, so every primitive central idempotent of $\mathbb{F}^t G$ is essential.

Example

Consider the case when $\mathbb{F} = \mathbb{F}_3$, $A = C_2 \times C_4 = \langle x \rangle \times \langle y \rangle$ and set

$$t(x^iy^j, x^ky^\ell) = (-1)^{i\ell}.$$

Then, $A_0 = \langle y^2 \rangle$ has order 2. Since 2 divides $|A_0|$ and the roots of $X^2 - 1$ are ± 1 , we have that A_0 does not satisfy the condition of the last Theorem, so this algebra contains no essential idempotents

Thank You!!